
The Synthetic Instrument

Linbo Wang
Univeristy of Toronto

Pacific Causal Inference Conference
September 16, 2022

1 / 20



Acknowledgements

Dingke Tang

Third-year PhD student in U Toronto

2 / 20



Causal inference with unmeasured confounding

X

Exposure

Y
Outcome

U

Confounder

Target: mean potential outcome E [Y (x)]

Challenge: often not possible to measure all the
confounders

E [Y (x)] = EUE [Y | X = x ,U]
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Multi-cause causal inference (Wang and Blei, 2019)

U

X (2)X (1) X (3)

Y

Multiple treatments; One outcome

Shared confounding among treatments

X (1) ⊥⊥ X (2) ⊥⊥ . . .X (p) | U
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Model Setup

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Assume linear models

X = Uα+ ϵX ;

Y = X Tβ + Uγ + ϵY .

Interested in estimating the causal parameters β
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Estimating α
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X (2)X (1) X (3)
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α3
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Estimating α: Standard factor analysis (p = 3)

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Under the linear treatment model,

X (1) = α1U + ϵ1;

X (2) = α2U + ϵ2;

X (3) = α3U + ϵ3,

we can identify α1, α2, α3 (up to sign)
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Estimating α: Standard factor analysis (p = 3)

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Three observed quantities:

Cov(X (1),X (2)),Cov(X (1),X (3)),Cov(X (2),X (3))

Three unknown parameters:

α1, α2, α3
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Estimating β

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Three observed quantities:

Cov(X (1),Y ),Cov(X (2),Y ),Cov(X (3),Y )

Four unknown parameters:

β1, β2, β3, γ
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Assuming known “Negative Treatment”

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1
β3

γ

Three observed quantities:

Cov(X (1),Y ),Cov(X (2),Y ),Cov(X (3),Y )

Three unknown parameters (β2 = 0):

β1, β3, γ
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Assuming known “Negative Treatment”

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1
β3

γ

This relates to the negative control approach in causal
inference

Problem: Need to know which treatment is “negative”
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This talk: Assume sparse treatment effects

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Assumption: ∥β∥0 ≤ 1

Causal effects β1, β2, β3 are identifiable
A simple and computationally efficient algorithm to
estimate the causal effect
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Sparse treatment effects: Identifiability
Sparse treatment effects: Estimation
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Identification under sparsity: ∥β∥0 ≤ 1

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1 β2
β3

γ

Suppose truth is β̇1 = β̇2 = 0, β̇3 ̸= 0:

Voter guess β̂1 β̂2 β̂3

β1 = 0 0 0 β3

β2 = 0 0 0 β3
β3 = 0 non-zero non-zero 0
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Voting in practice

U

X (2)X (1) X (p)· · ·

Y

α1 α2
αp

β1 β2
βp

γ ∈ Rq
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Voting in practice

U

X (2)X (1) X (p)· · ·

Y

α1 α2
αp

β1 β2
βp

γ ∈ Rq

In general, we need to compute causal effect estimates for(
p
q

)
voters

Not feasible/numerical stable if p is large!
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Sparse treatment effects: Identifiability
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Another look from an instrumental variable (IV) perspective

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1
β3

γ

Assume Negative Treatment: β2 = 0

Construct a Synthetic Instrument:

SIV (1)
2 = X (1) − α1

α2
X (2)

= ϵ1 −
α1

α2
ϵ2 is an IV for X (1)

SIV (3)
2 = X (3) − α3

α2
X (2) = ϵ3 −

α3

α2
ϵ2 is an IV for X (3)
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The Synthetic 2SLS

U

X (2)X (1) X (3)

Y

α1 α2
α3

β1
β3

γ

Two stage least squares (2SLS):

1. Regress X = (X (1),X (2),X (3)) on SIV2 = (SIV (1)
2 ,SIV (3)

2 )

2. Regress Y on X̂ fixing β2 = 0
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Voting with Synthetic 2SLS

1. For j = 1,2,3: Regress X on SIVj ⇒ X̂ (j)

2 For j = 1,2,3: Regress Y on X̂ (j) fixing βj = 0
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Voting with Synthetic 2SLS

1. For j = 1,2,3: Regress X on SIVj ⇒ X̂ (j)

Key result 1: X̂ (j) does not depend on j
SIV1,SIV2,SIV3 span the same linear space
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Voting with Synthetic 2SLS

1. ////For//////////////j = 1,2,3: Regress X on SIV(1) ⇒ X̂ (j)//
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Voting with Synthetic 2SLS

1. ////For//////////////j = 1,2,3: Regress X on SIV(1) ⇒ X̂ (j)//

2 For j = 1,2,3: Regress Y on X̂ (j)// fixing βj = 0

Suppose β̇1 = β̇2 = 0, β̇3 ̸= 0:

Voter 1 E(Y | X̂ ) = 0X̂1 + β2X̂2 + β3X̂3

Voter 2 E(Y | X̂ ) = β1X̂1 + 0X̂2 + β3X̂3

Voter 3 E(Y | X̂ ) = β1X̂1 + β2X̂2 + 0X̂3

and then compare estimates

Key result 2: We can directly run a penalized regression

Y ∼ X̂1 + X̂2 + X̂3.

subject to ∥β∥0 ≤ 1.
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Synthetic 2SLS for sparse treatment effects

1. ////For//////////////j = 1,2,3: Regress X on SIV(1) ⇒ X̂ (j)//

2 ////For//////////////j = 1,2,3: Regress Y on X̂ subject to
∥(β1, β2, β3)∥0 ≤ 1.
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Synthetic Instrument: The general case

X = UT A + ϵX ;

Y = X Tβ + Uγ + ϵY .

X ∈ Rp : p may grow with n
U ∈ Rq : q < p may also grow with n
ϵX1 , ϵX2 , . . . , ϵXp , ϵY ,U are uncorrelated
Assume ∥β∥0 ≤ s

Synthetic instrument (SIV): Suppose βj = 0 for j ∈ C, |C| = q.
Then the synthetic instrument is a p − q dimensional vector
with components

SIV (j)
C = X (j) − AT

j A−1
C XC , j ∈ {1, . . . ,p} \ C,

where Aj is the j th column of Aq×p.
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Main Result 1

Theorem (Uniqueness)

X̂ ≡ E(X | SIVC) does not depend on the choice of C.
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Main Result 2

Theorem (ℓ0 optimization)
Assume that β is sufficiently sparse. Then under regularity
conditions, β is identifiable via following optimization problem

β̇ = argmin
β∈Rp

E(Y − X̂ Tβ)2,

subject to ||β||0 ≤ (dim(X )− dim(U))/2.

Can be solved efficiently using the L0Learn package
(Hazimeh and Mazumder, 2020)
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Numerical experiments
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Data generation

U

X (1), . . . ,X (5) X (6), . . . ,X (p)

Y

αj,k αj,k

βj

γk

U ∼ MVN(0, I5×5)

αj,k ∼ Unif (−1,1), j = 1, . . . ,p, k = 1, . . . ,5
βj = 1, j = 1, . . . ,5
γk ∼ Unif (−2,2), k = 1, . . . ,5
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Comparison Methods

SIV: Synthetic 2SLS, eBIC for tunning parameter selection
Lasso: Lasso, eBIC for tunning parameter selection

Null: Miao et al. (2021)’s method
A robust linear regression based approach
No variable selection: all β̂j , j = 1, . . . ,p are non-zero
Only considered the low-dimensional settings (we tried an
extension to high-dimensional settings)

Trim: Ćevid et al. (2020) and Guo et al. (2021)’s method

Coef(Y ∼ X ) = sparse coefficient+non-sparse confounding bias

Assume the confounding bias is asymptotically negligible
Only consistent in high-dimensional settings
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Settings

Low-dimensional case: p = 100,n = 200, . . . ,5000

High-dimensional case: n = 500,p = 500, . . . ,3000

Measures of performance:

Estimation error: ℓ1 error

∥β̂ − β∥1

Variable selection: false discovery rate
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Low dimensional case: Estimation error

Estimation error ||β̂ − β||1 for various methods 16 / 20



Low dimensional case: Variable selection

All methods correctly identify X1, . . . ,X5 as causes of Y
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High dimensional case: Estimation error

Estimation error ||β̂ − β||1 for various methods 18 / 20



High dimensional case: Variable selection

All methods correctly identify X1, . . . ,X5 as causes of Y
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Summary

Causal inference is possible with a high-dimensional
exposure and sparse treatment effects

Synthetic instrument is a powerful tool for causal effect
estimation under linear models with multiple causes

Easy to implement

Computationally efficient

Outperform the state-of-art method in various settings

Causal effect estimation

Selection of true causes
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Assumptions

B1 The eigenvalues of ATA/p and D are bounded away from 0
and infinity. ||γ||2 ≤ ∞.

B2 ϵy is independent of (X ,U). Further more, assume ϵy ,i , Xi,j
are i.i.d sub-gaussian random variables such that
||ϵy ,i ||ψ2 = σ2

y , max1≤j≤p ||Xi,j ||ψ2 = σ2
x . The parameters

satisfies σ2
y ≤ C4, C5 ≤ σ2

x ≤ C6 for some constant
C4,C5,C6 > 0.

B3 (Restrict sparse eigenvalue condition) with probability
1 − exp(cn) for some positive constant c, there exist a
constant π0 such that

||X̂θ||2 ≥ π0
√

n||θ||2, ∀||θ||0 ≤ 2s.
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Miao et al. (2021)’s method

(Their δ is our γ, corresponding to the edge U → Y )
1. Standard factor analysis to get α, and γ = Σ−1

X α

2. Regress Y on X to get ξj as the coefficient for X (j)

3. Since ξj = βj + γjδ, and ∥β∥0 ≤ (p − q)/2, they let

δ̂ = argmin
δ

median{(ξ̂j − γ̂jδ)
2}

4. β̂ = ξ̂ − γ̂δ̂
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Ćevid et al. (2020)’s method

Assume X and U are jointly Gaussian.

Assume confounding is negligible:

∥b∥2
2 = O(

sσ2 log p
p

).

It is important that the effect of the latent variables is spread out
over many predictors
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Synthetic 2SLS: Stage I

Stage I: Regress X on BA⊥X :

E(X | BA⊥X ) = DBA⊥(BT
A⊥DBA⊥)−1BT

A⊥X ,

where D = Cov(ϵX ) is a diagonal matrix.

1. Estimate Aq×p and BA⊥

: standard factor analysis

2. Estimate Dp×p

D̂ = V̂ar(X )− ÂT Â

3. Plug in

: Need to invert (BT
A⊥DBA⊥)(p−q)×(p−q)

Let X̃ = X D̂−1/2 so that

E(X̃ | BA⊥X̃ ) = D̂1/2B̃A⊥B̃T
A⊥D̂−1/2X̃ ,

20 / 20



Synthetic 2SLS: Stage I

Stage I: Regress X on BA⊥X :

E(X | BA⊥X ) = DBA⊥(BT
A⊥DBA⊥)−1BT

A⊥X ,

where D = Cov(ϵX ) is a diagonal matrix.

1. Estimate Aq×p and BA⊥ : standard factor analysis

2. Estimate Dp×p

D̂ = V̂ar(X )− ÂT Â
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Synthetic 2SLS in high dimensions: Stage II

Need to estimate

β̇ = argmin
β∈Rp

E(Y − X̂ Tβ)2,

subject to ||β||0 ≤ (dim(X )− dim(U))/2

Can be solved efficiently using the L0Learn package
(Hazimeh and Mazumder, 2020)
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Theoretical results: Error bound

Theorem
Under the same assumptions as before, and standard
regularity conditions, we have

||β̂ − β||1 = Op(s

√
log(p)

n
)

s = ∥β∥0

p = dim(X )

n = sample size
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