The Synthetic Instrument

Linbo Wang

Univeristy of Toronto

Pacific Causal Inference Conference September 16, 2022

Acknowledgements

Dingke Tang

- Third-year PhD student in U Toronto

Causal inference with unmeasured confounding

- Target: mean potential outcome $E[Y(x)]$
- Challenge: often not possible to measure all the confounders

$$
E[Y(x)]=E_{U} E[Y \mid X=x, U]
$$

Multi-cause causal inference (Wang and Blei, 2019)

- Multiple treatments; One outcome
- Shared confounding among treatments

$$
X^{(1)} \Perp X^{(2)} \Perp \ldots X^{(p)} \mid U
$$

Model Setup

Assume linear models

$$
\begin{aligned}
& \boldsymbol{X}=U \boldsymbol{\alpha}+\epsilon_{X} \\
& Y=\boldsymbol{X}^{T} \beta+U_{\gamma}+\epsilon_{Y}
\end{aligned}
$$

Interested in estimating the causal parameters $\boldsymbol{\beta}$

Estimating α

Estimating α : Standard factor analysis $(p=3)$

Under the linear treatment model,

$$
\begin{aligned}
& X^{(1)}=\alpha_{1} U+\epsilon_{1} ; \\
& X^{(2)}=\alpha_{2} U+\epsilon_{2} ; \\
& X^{(3)}=\alpha_{3} U+\epsilon_{3},
\end{aligned}
$$

we can identify $\alpha_{1}, \alpha_{2}, \alpha_{3}$ (up to sign)

Estimating α : Standard factor analysis $(p=3)$

Three observed quantities:

$$
\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right), \operatorname{Cov}\left(X^{(1)}, X^{(3)}\right), \operatorname{Cov}\left(X^{(2)}, X^{(3)}\right)
$$

Three unknown parameters:

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}
$$

Estimating $\boldsymbol{\beta}$

Three observed quantities:

$$
\operatorname{Cov}\left(X^{(1)}, Y\right), \operatorname{Cov}\left(X^{(2)}, Y\right), \operatorname{Cov}\left(X^{(3)}, Y\right)
$$

Four unknown parameters:
$\beta_{1}, \beta_{2}, \beta_{3}, \gamma$

Assuming known "Negative Treatment"

Three observed quantities:

$$
\operatorname{Cov}\left(X^{(1)}, Y\right), \operatorname{Cov}\left(X^{(2)}, Y\right), \operatorname{Cov}\left(X^{(3)}, Y\right)
$$

Three unknown parameters ($\beta_{2}=0$):

$$
\beta_{1}, \beta_{3}, \gamma
$$

Assuming known "Negative Treatment"

- This relates to the negative control approach in causal inference
- Problem: Need to know which treatment is "negative"

This talk: Assume sparse treatment effects

Assumption: $\|\boldsymbol{\beta}\|_{0} \leq 1$

- Causal effects $\beta_{1}, \beta_{2}, \beta_{3}$ are identifiable
- A simple and computationally efficient algorithm to estimate the causal effect

Sparse treatment effects: Identifiability

 Sparse treatment effects: EstimationIdentification under sparsity: $\|\boldsymbol{\beta}\|_{0} \leq 1$

Suppose truth is $\dot{\beta}_{1}=\dot{\beta}_{2}=0, \dot{\beta}_{3} \neq 0$:

Voter guess	$\widehat{\beta}_{1}$	$\widehat{\beta}_{2}$	$\widehat{\beta}_{3}$
$\beta_{1}=0$	0	0	β_{3}

Identification under sparsity: $\|\boldsymbol{\beta}\|_{0} \leq 1$

Suppose truth is $\dot{\beta}_{1}=\dot{\beta}_{2}=0, \dot{\beta}_{3} \neq 0$:

Voter guess	$\widehat{\beta}_{1}$	$\widehat{\beta}_{2}$	$\widehat{\beta}_{3}$
$\beta_{1}=0$	0	0	β_{3}
$\beta_{2}=0$	0	0	β_{3}

Identification under sparsity: $\|\boldsymbol{\beta}\|_{0} \leq 1$

Suppose truth is $\dot{\beta}_{1}=\dot{\beta}_{2}=0, \dot{\beta}_{3} \neq 0$:

Voter guess	$\widehat{\beta}_{1}$	$\widehat{\beta}_{2}$	$\widehat{\beta}_{3}$
$\beta_{1}=0$	0	0	β_{3}
$\beta_{2}=0$	0	0	β_{3}
$\beta_{3}=0$	non-zero	non-zero	0

Voting in practice

Voting in practice

- In general, we need to compute causal effect estimates for $\binom{p}{q}$ voters

Voting in practice

- In general, we need to compare causal effect estimates for $\binom{p}{q}$ voters

Voting in practice

- In general, we need to compare causal effect estimates for $\binom{p}{q}$ voters

Not feasible/numerical stable if p is large!

Sparse treatment effects: Identifiability

Sparse treatment effects: Estimation

Another look from an instrumental variable (IV) perspective

Assume Negative Treatment: $\beta_{2}=0$
Construct a Synthetic Instrument:

$$
S I V_{2}^{(1)}=X^{(1)}-\frac{\alpha_{1}}{\alpha_{2}} X^{(2)}
$$

The Synthetic Instrument

Assume Negative Treatment: $\beta_{2}=0$
Construct a Synthetic Instrument:

$$
S I V_{2}^{(1)}=X^{(1)}-\frac{\alpha_{1}}{\alpha_{2}} X^{(2)}=\epsilon_{1}-\frac{\alpha_{1}}{\alpha_{2}} \epsilon_{2} \text { is an IV for } X^{(1)}
$$

The Synthetic Instrument

Assume Negative Treatment: $\beta_{2}=0$
Construct a Synthetic Instrument:

$$
\begin{aligned}
& S I V_{2}^{(1)}=X^{(1)}-\frac{\alpha_{1}}{\alpha_{2}} X^{(2)}=\epsilon_{1}-\frac{\alpha_{1}}{\alpha_{2}} \epsilon_{2} \text { is an IV for } X^{(1)} \\
& S I V_{2}^{(3)}=X^{(3)}-\frac{\alpha_{3}}{\alpha_{2}} X^{(2)}=\epsilon_{3}-\frac{\alpha_{3}}{\alpha_{2}} \epsilon_{2} \text { is an IV for } X^{(3)}
\end{aligned}
$$

The Synthetic 2SLS

Two stage least squares (2SLS):

1. Regress $\boldsymbol{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$ on $\operatorname{SIV}_{2}=\left(S I V_{2}^{(1)}, \operatorname{SIV}_{2}^{(3)}\right)$
2. Regress Y on $\widehat{\boldsymbol{X}}$ fixing $\beta_{2}=0$

Voting with Synthetic 2SLS

1. For $j=1,2,3$: Regress \boldsymbol{X} on $\mathbf{S I V}_{j} \Rightarrow \widehat{\boldsymbol{X}}^{(j)}$

2 For $j=1,2,3$: Regress Y on $\widehat{\boldsymbol{X}}^{(j)}$ fixing $\beta_{j}=0$

Voting with Synthetic 2SLS

1. For $j=1,2,3$: Regress \boldsymbol{X} on $\mathbf{S I V}_{j} \Rightarrow \widehat{\boldsymbol{X}}^{(j)}$

Key result 1: $\widehat{\boldsymbol{X}}^{(j)}$ does not depend on j

- $\mathbf{S I V}_{1}, \mathbf{S I V}_{2}, \mathbf{S I V}_{3}$ span the same linear space

Voting with Synthetic 2SLS

Voting with Synthetic 2SLS

2 For $j=1,2,3$: Regress Y on $\widehat{\boldsymbol{X}}$ fixing $\beta_{j}=0$

$$
\begin{array}{ll}
\text { Voter 1 } & E(Y \mid \widehat{\boldsymbol{X}})=0 \widehat{X}_{1}+\beta_{2} \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 2 } & E(Y \mid \widehat{\boldsymbol{X}})=\beta_{1} \widehat{X}_{1}+0 \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 3 } & E(Y \mid \widehat{\boldsymbol{X}})=\beta_{1} \widehat{X}_{1}+\beta_{2} \widehat{X}_{2}+0 \widehat{X}_{3}
\end{array}
$$

and then compare estimates

Voting with Synthetic 2SLS

2 For $j=1,2,3$: Regress Y on $\widehat{\boldsymbol{X}}$ fixing $\beta_{j}=0$
Suppose $\dot{\beta}_{1}=\dot{\beta}_{2}=0, \dot{\beta}_{3} \neq 0$:

$$
\begin{array}{ll}
\text { Voter 1 } & E(Y \mid \widehat{\boldsymbol{X}})=0 \widehat{X}_{1}+0 \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 2 } & E(Y \mid \widehat{\boldsymbol{X}})=0 \widehat{X}_{1}+0 \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 3 } & E(Y \mid \widehat{\boldsymbol{X}})=\beta_{1} \widehat{X}_{1}+\beta_{2} \widehat{X}_{2}+0 \widehat{X}_{3}
\end{array}
$$

and then compare estimates

Voting with Synthetic 2SLS

2 For $j=1,2,3$: Regress Y on $\widehat{\boldsymbol{X}}$ fixing $\beta_{j}=0$
Suppose $\dot{\beta}_{1}=\dot{\beta}_{2}=0, \dot{\beta}_{3} \neq 0$:

$$
\begin{array}{ll}
\text { Voter 1 } & E(Y \mid \widehat{\boldsymbol{X}})=0 \widehat{X}_{1}+0 \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 2 } & E(Y \mid \widehat{\boldsymbol{X}})=0 \widehat{X}_{1}+0 \widehat{X}_{2}+\beta_{3} \widehat{X}_{3} \\
\text { Voter 3 } & E(Y \mid \widehat{\boldsymbol{X}})=\beta_{1} \widehat{X}_{1}+\beta_{2} \widehat{X}_{2}+0 \widehat{X}_{3}
\end{array}
$$

and then compare estimates
Key result 2: We can directly run a penalized regression

$$
Y \sim \widehat{X}_{1}+\widehat{X}_{2}+\widehat{X}_{3}
$$

subject to $\|\boldsymbol{\beta}\|_{0} \leq 1$.

Synthetic 2SLS for sparse treatment effects

 $\left\|\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\right\|_{0} \leq 1$.

Synthetic Instrument: The general case

$$
\begin{aligned}
\boldsymbol{X} & =\boldsymbol{U}^{\top} A+\epsilon_{X} ; \\
Y & =\boldsymbol{X}^{\top} \boldsymbol{\beta}+\boldsymbol{U}_{\gamma}+\epsilon_{Y} .
\end{aligned}
$$

- $\boldsymbol{X} \in \mathbb{R}^{p}: p$ may grow with n
- $\boldsymbol{U} \in \mathbb{R}^{q}: q<p$ may also grow with n
- $\epsilon_{X_{1}}, \epsilon_{X_{2}}, \ldots, \epsilon_{X_{p}}, \epsilon_{Y}, U$ are uncorrelated
- Assume $\|\boldsymbol{\beta}\|_{0} \leq s$

Synthetic Instrument: The general case

$$
\begin{aligned}
\boldsymbol{X} & =\boldsymbol{U}^{\top} A+\epsilon_{X} ; \\
Y & =\boldsymbol{X}^{\top} \boldsymbol{\beta}+\boldsymbol{U}_{\gamma}+\epsilon_{Y} .
\end{aligned}
$$

- $\boldsymbol{X} \in \mathbb{R}^{p}: p$ may grow with n
- $\boldsymbol{U} \in \mathbb{R}^{q}: q<p$ may also grow with n
- $\epsilon_{X_{1}}, \epsilon_{X_{2}}, \ldots, \epsilon_{X_{p}}, \epsilon_{Y}, U$ are uncorrelated
- Assume $\|\boldsymbol{\beta}\|_{0} \leq s$

Synthetic instrument (SIV): Suppose $\beta_{j}=0$ for $j \in C,|C|=q$. Then the synthetic instrument is a $p-q$ dimensional vector with components

$$
S I V_{C}^{(j)}=X^{(j)}-A_{j}^{T} A_{C}^{-1} X_{C}, \quad j \in\{1, \ldots, p\} \backslash C,
$$

where A_{j} is the j th column of $A_{q \times p}$.

Main Result 1

Theorem (Uniqueness)

$\widehat{\boldsymbol{x}} \equiv \mathbb{E}\left(\boldsymbol{X} \mid S I V_{\mathbf{C}}\right) \quad$ does not depend on the choice of C.

Main Result 2

Theorem (ℓ_{0} optimization)
Assume that β is sufficiently sparse. Then under regularity conditions, $\boldsymbol{\beta}$ is identifiable via following optimization problem

$$
\dot{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg \min } \mathbb{E}\left(Y-\widehat{\boldsymbol{X}}^{T} \boldsymbol{\beta}\right)^{2},
$$

subject to $\|\boldsymbol{\beta}\|_{0} \leq(\operatorname{dim}(\boldsymbol{X})-\operatorname{dim}(\boldsymbol{U})) / 2$.

Main Result 2

Theorem (ℓ_{0} optimization)
Assume that β is sufficiently sparse. Then under regularity conditions, β is identifiable via following optimization problem

$$
\dot{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg \min } \mathbb{E}\left(Y-\widehat{\boldsymbol{X}}^{\top} \boldsymbol{\beta}\right)^{2},
$$

subject to $\|\boldsymbol{\beta}\|_{0} \leq(\operatorname{dim}(\boldsymbol{X})-\operatorname{dim}(\boldsymbol{U})) / 2$.

- Can be solved efficiently using the L0Learn package (Hazimeh and Mazumder, 2020)

Numerical experiments

Data generation

- $U \sim \operatorname{MVN}\left(0, I_{5 \times 5}\right)$
- $\alpha_{j, k} \sim \operatorname{Unif}(-1,1), j=1, \ldots, p, k=1, \ldots, 5$
- $\beta_{j}=1, j=1, \ldots, 5$
- $\gamma_{k} \sim \operatorname{Unif}(-2,2), k=1, \ldots, 5$

Comparison Methods

- SIV: Synthetic 2SLS, eBIC for tunning parameter selection
- Lasso: Lasso, eBIC for tunning parameter selection
- Null: Miao et al. (2021)'s method
- A robust linear regression based approach
- No variable selection: all $\widehat{\beta}_{j}, j=1, \ldots, p$ are non-zero
- Only considered the low-dimensional settings (we tried an extension to high-dimensional settings)
- Trim: Ćevid et al. (2020) and Guo et al. (2021)'s method
$\operatorname{Coef}(Y \sim \boldsymbol{X})=$ sparse coefficient + non-sparse confounding bias
- Assume the confounding bias is asymptotically negligible
- Only consistent in high-dimensional settings

Settings

- Low-dimensional case: $p=100, n=200, \ldots, 5000$
- High-dimensional case: $n=500, p=500, \ldots, 3000$

Measures of performance:

- Estimation error: ℓ_{1} error

$$
\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{1}
$$

- Variable selection: false discovery rate

Low dimensional case: Estimation error

$$
p=100, q=5, s=5
$$

methods
\rightarrow Lasso
\rightarrow Null
\rightarrow SIV
-- Trim

Estimation error $\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{1}$ for various methods

LOV' Nimnnainnal nonon. V/arinhln anlnntinn

$$
n=500, q=5, s=5
$$

All methods correctly identify X_{1}, \ldots, X_{5} as causes of Y

High dimensional case: Estimation error

$$
n=500, q=5, s=5
$$

Estimation error $\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{1}$ for various methods

High dimensional case: Variable selection

All methods correctly identify X_{1}, \ldots, X_{5} as causes of Y

Summary

- Causal inference is possible with a high-dimensional exposure and sparse treatment effects
- Synthetic instrument is a powerful tool for causal effect estimation under linear models with multiple causes
- Easy to implement
- Computationally efficient
- Outperform the state-of-art method in various settings
- Causal effect estimation
- Selection of true causes

References I

Ćevid, D., Bühlmann, P., and Meinshausen, N. (2020). Spectral deconfounding via perturbed sparse linear models. Journal of Machine Learning Research, 21:232.
Guo, Z., Ćevid, D., and Bühlmann, P. L. (2021). Doubly debiased lasso: High-dimensional inference under hidden confounding. The Annals of Statistics.
Hazimeh, H. and Mazumder, R. (2020). Fast best subset selection: Coordinate descent and local combinatorial optimization algorithms. Operations Research, 68(5):1517-1537.
Miao, W., Hu, W., Ogburn, E. L., and Zhou, X. (2021). Identifying effects of multiple treatments in the presence of unmeasured confounding. Journal of the American Statistical Association, (just-accepted):1-36.
Wang, Y. and Blei, D. M. (2019). The blessings of multiple causes. Journal of the American Statistical Association, 114(528):1574-1596.

Assumptions

B1 The eigenvalues of $A^{\mathrm{T}} A / p$ and D are bounded away from 0 and infinity. $\|\gamma\|_{2} \leq \infty$.
B2 ϵ_{y} is independent of (X, U). Further more, assume $\epsilon_{y, i}, X_{i, j}$ are i.i.d sub-gaussian random variables such that $\left\|\epsilon_{y, i}\right\|_{\psi 2}=\sigma_{y}^{2}, \max _{1 \leq j \leq p}\left\|X_{i, j}\right\|_{\psi 2}=\sigma_{x}^{2}$. The parameters satisfies $\sigma_{y}^{2} \leq C_{4}, C_{5} \leq \sigma_{x}^{2} \leq C_{6}$ for some constant $C_{4}, C_{5}, C_{6}>0$.
B3 (Restrict sparse eigenvalue condition) with probability $1-\exp (c n)$ for some positive constant c , there exist a constant π_{0} such that

$$
\|\widehat{X} \theta\|_{2} \geq \pi_{0} \sqrt{n}\|\theta\|_{2}, \forall\|\theta\|_{0} \leq 2 s .
$$

Miao et al. (2021)'s method

(Their δ is our γ, corresponding to the edge $U \rightarrow Y$)

1. Standard factor analysis to get α, and $\gamma=\Sigma_{X}^{-1} \alpha$
2. Regress Y on \boldsymbol{X} to get ξ_{j} as the coefficient for $\boldsymbol{X}^{(j)}$
3. Since $\xi_{j}=\beta_{j}+\gamma_{j} \delta$, and $\|\boldsymbol{\beta}\|_{0} \leq(p-q) / 2$, they let

$$
\widehat{\delta}=\arg \min _{\delta} \operatorname{median}\left\{\left(\widehat{\xi}_{j}-\widehat{\gamma}_{j} \delta\right)^{2}\right\}
$$

4. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\xi}}-\widehat{\gamma} \widehat{\delta}$

Ćevid et al. (2020)'s method

Assume X and U are jointly Gaussian.
Assume confounding is negligible:

$$
\|b\|_{2}^{2}=O\left(\frac{\boldsymbol{s} \sigma^{2} \log p}{p}\right)
$$

It is important that the effect of the latent variables is spread out over many predictors

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{+}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{\top} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$
2. Estimate $D_{p \times p}$
3. Plug in

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{-}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{\top} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$
3. Plug in

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{-}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{\top} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$

$$
\widehat{D}=\widehat{\operatorname{Var}}(\boldsymbol{X})-\widehat{\boldsymbol{A}}^{T} \widehat{A}
$$

3. Plug in

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{+}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{\top} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$

$$
\widehat{D}=\operatorname{diag}\left(\widehat{\operatorname{Var}}\left(X^{(j)}\right)-\widehat{A}_{j}^{\top} \widehat{A}_{j}\right) \text {, here } \widehat{A}_{j} \text { is j'th row of } \widehat{A}
$$

3. Plug in

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{\perp}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{\top} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$

$$
\widehat{D}=\operatorname{diag}\left(\widehat{\operatorname{Var}}\left(X^{(j)}\right)-\widehat{A}_{j}^{\top} \widehat{A}_{j}\right) \text {, here } \widehat{A}_{j} \text { is j'th row of } \widehat{A}
$$

3. Plug in: Need to invert $\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)_{(p-q) \times(p-q)}$

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{+}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{T} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$

$$
\widehat{D}=\operatorname{diag}\left(\widehat{\operatorname{Var}}\left(X^{(j)}\right)-\widehat{A}_{j}^{\top} \widehat{A}_{j}\right) \text {, here } \widehat{A}_{j} \text { is j'th row of } \widehat{A}
$$

3. Plug in: Need to invert $\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)_{(p-q) \times(p-q)}$

Let $\widetilde{\boldsymbol{X}}=\boldsymbol{X} \widehat{D}^{-1 / 2}$ so that

$$
E\left(\widetilde{\boldsymbol{X}} \mid B_{A^{\perp}} \widetilde{\boldsymbol{X}}\right)=\widehat{D}^{1 / 2} \widetilde{B}_{A^{\perp}}\left(\widetilde{B}_{A^{\perp}}^{\top} \widetilde{B}_{A^{\perp}}\right)^{-1} \widetilde{B}_{A^{\perp}}^{\top} \widehat{D}^{-1 / 2} \widetilde{\boldsymbol{X}},
$$

Synthetic 2SLS: Stage I

Stage I: Regress \boldsymbol{X} on $B_{A^{+}} \boldsymbol{X}$:

$$
E\left(\boldsymbol{X} \mid B_{A^{\perp}} \boldsymbol{X}\right)=D B_{A^{\perp}}\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)^{-1} B_{A^{\perp}}^{T} \boldsymbol{X},
$$

where $D=\operatorname{Cov}\left(\epsilon_{X}\right)$ is a diagonal matrix.

1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
2. Estimate $D_{p \times p}$

$$
\widehat{D}=\operatorname{diag}\left(\widehat{\operatorname{Var}}\left(X^{(j)}\right)-\widehat{A}_{j}^{\top} \widehat{A}_{j}\right) \text {, here } \widehat{A}_{j} \text { is j'th row of } \widehat{A}
$$

3. Plug in: Need to invert $\left(B_{A^{\perp}}^{\mathrm{T}} D B_{A^{\perp}}\right)_{(p-q) \times(p-q)}$

Let $\widetilde{\boldsymbol{X}}=\boldsymbol{X} \widehat{D}^{-1 / 2}$ so that

$$
E\left(\widetilde{\boldsymbol{X}} \mid B_{A^{\perp}} \widetilde{\boldsymbol{X}}\right)=\widehat{D}^{1 / 2} \widetilde{B}_{A^{\perp}}\left({\widetilde{B_{A}} \mathrm{~T}}_{\top}^{\left.\boldsymbol{B}_{A^{+}}\right)^{-1} \widetilde{B}_{A^{\perp}}^{\top} \widehat{D}^{-1 / 2} \widetilde{\boldsymbol{X}}, ~}\right.
$$

Synthetic 2SLS in high dimensions: Stage II

Need to estimate

$$
\dot{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg \min } \mathbb{E}\left(Y-\widehat{X}^{T} \boldsymbol{\beta}\right)^{2}
$$

subject to $\|\boldsymbol{\beta}\|_{0} \leq(\operatorname{dim}(X)-\operatorname{dim}(U)) / 2$

- Can be solved efficiently using the L0Learn package (Hazimeh and Mazumder, 2020)

Theoretical results: Error bound

Theorem
Under the same assumptions as before, and standard regularity conditions, we have

$$
\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{1}=O_{p}\left(s \sqrt{\frac{\log (p)}{n}}\right)
$$

- $s=\|\boldsymbol{\beta}\|_{0}$
- $p=\operatorname{dim}(X)$
- $n=$ sample size

