The Synthetic Instrument

Linbo Wang Univeristy of Toronto

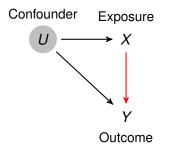
Pacific Causal Inference Conference September 16, 2022

Acknowledgements

Dingke Tang

• Third-year PhD student in U Toronto

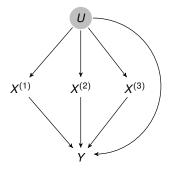
Causal inference with unmeasured confounding



- Target: mean potential outcome *E*[*Y*(*x*)]
- Challenge: often not possible to measure all the confounders

$$E[Y(x)] = E_{U}E[Y \mid X = x, U]$$

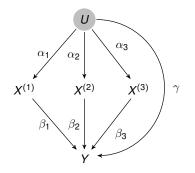
Multi-cause causal inference (Wang and Blei, 2019)



- Multiple treatments; One outcome
- Shared confounding among treatments

$$X^{(1)} \perp \!\!\!\perp X^{(2)} \perp \!\!\!\perp \ldots X^{(p)} \mid U$$

Model Setup

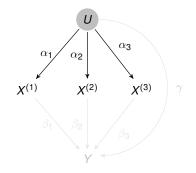


Assume linear models

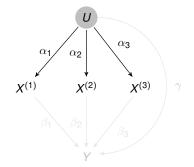
$$\begin{aligned} \mathbf{X} &= \mathbf{U}\boldsymbol{\alpha} + \boldsymbol{\epsilon}_{\mathbf{X}}; \\ \mathbf{Y} &= \mathbf{X}^{\mathsf{T}}\boldsymbol{\beta} + \mathbf{U}\boldsymbol{\gamma} + \boldsymbol{\epsilon}_{\mathbf{Y}}. \end{aligned}$$

Interested in estimating the causal parameters β

Estimating α



Estimating α : Standard factor analysis (p = 3)



Under the linear treatment model,

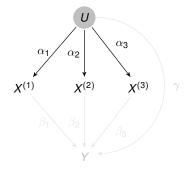
$$X^{(1)} = \alpha_1 U + \epsilon_1;$$

$$X^{(2)} = \alpha_2 U + \epsilon_2;$$

$$X^{(3)} = \alpha_3 U + \epsilon_3,$$

we can identify $\alpha_1, \alpha_2, \alpha_3$ (up to sign)

Estimating α : Standard factor analysis (p = 3)



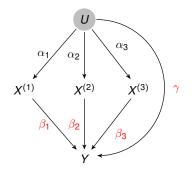
Three observed quantities:

$$Cov(X^{(1)}, X^{(2)}), Cov(X^{(1)}, X^{(3)}), Cov(X^{(2)}, X^{(3)})$$

Three unknown parameters:

 $\alpha_1, \alpha_2, \alpha_3$

Estimating *B*



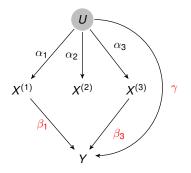
Three observed quantities:

$$Cov(X^{(1)}, Y), Cov(X^{(2)}, Y), Cov(X^{(3)}, Y)$$

Four unknown parameters:

$$\beta_1, \beta_2, \beta_3, \gamma$$

Assuming known "Negative Treatment"



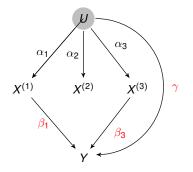
Three observed quantities:

$$Cov(X^{(1)}, Y), Cov(X^{(2)}, Y), Cov(X^{(3)}, Y)$$

Three unknown parameters ($\beta_2 = 0$):

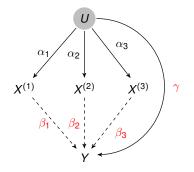
 eta_1,eta_3,γ

Assuming known "Negative Treatment"



- This relates to the negative control approach in causal inference
- Problem: Need to know which treatment is "negative"

This talk: Assume sparse treatment effects

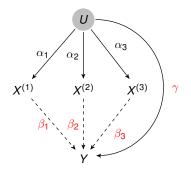


Assumption: $\|\beta\|_0 \leq 1$

- Causal effects $\beta_1, \beta_2, \beta_3$ are identifiable
- A simple and computationally efficient algorithm to estimate the causal effect

Sparse treatment effects: Identifiability Sparse treatment effects: Estimation

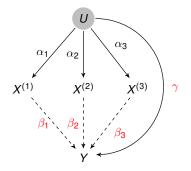
Identification under sparsity: $\|\boldsymbol{\beta}\|_0 \leq 1$



Suppose truth is $\dot{\beta}_1 = \dot{\beta}_2 = 0, \dot{\beta}_3 \neq 0$:

Voter guess	\widehat{eta}_{1}	$\widehat{\beta}_{2}$	\widehat{eta}_{3}
$\beta_1 = 0$	0	0	β_3

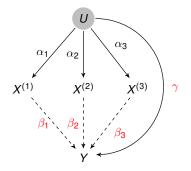
Identification under sparsity: $\|\boldsymbol{\beta}\|_0 \leq 1$



Suppose truth is $\dot{\beta}_1 = \dot{\beta}_2 = 0, \dot{\beta}_3 \neq 0$:

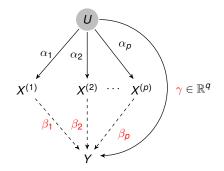
Voter guess	\widehat{eta}_{1}	$\widehat{\beta}_{2}$	$\widehat{\beta}_{3}$
$\beta_1 = 0$	0	0	β_3
$eta_{2}=0$	0	0	β_3

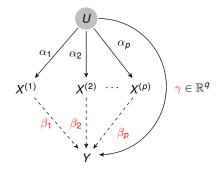
Identification under sparsity: $\|\boldsymbol{\beta}\|_0 \leq 1$



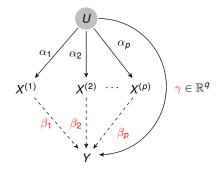
Suppose truth is $\dot{\beta}_1 = \dot{\beta}_2 = 0, \dot{\beta}_3 \neq 0$:

Voter guess	\widehat{eta}_{1}	\widehat{eta}_{2}	$\widehat{\beta}_{3}$
$\beta_1 = 0$	0	0	β_3
$\beta_2 = 0$	0	0	β_{3}
$\beta_3 = 0$	non-zero	non-zero	0

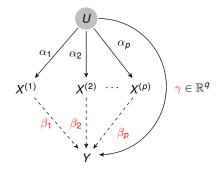




• In general, we need to compute causal effect estimates for $\begin{pmatrix} p \\ q \end{pmatrix}$ voters



• In general, we need to compare causal effect estimates for $\begin{pmatrix} p \\ q \end{pmatrix}$ voters

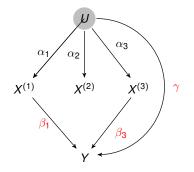


• In general, we need to compare causal effect estimates for $\begin{pmatrix} p \\ q \end{pmatrix}$ voters

Not feasible/numerical stable if *p* is large!

Sparse treatment effects: Identifiability Sparse treatment effects: Estimation

Another look from an instrumental variable (IV) perspective

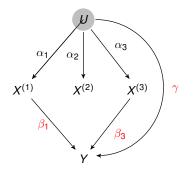


Assume Negative Treatment: $\beta_2 = 0$

Construct a Synthetic Instrument:

$$SIV_2^{(1)} = X^{(1)} - \frac{\alpha_1}{\alpha_2}X^{(2)}$$

The Synthetic Instrument

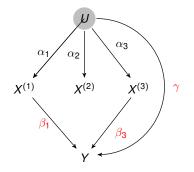


Assume Negative Treatment: $\beta_2 = 0$

Construct a Synthetic Instrument:

$$SIV_2^{(1)} = X^{(1)} - \frac{\alpha_1}{\alpha_2}X^{(2)} = \epsilon_1 - \frac{\alpha_1}{\alpha_2}\epsilon_2$$
 is an IV for $X^{(1)}$

The Synthetic Instrument



Assume Negative Treatment: $\beta_2 = 0$

Construct a Synthetic Instrument:

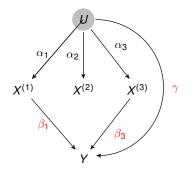
 α_2

$$SIV_2^{(1)} = X^{(1)} - \frac{\alpha_1}{\alpha_2}X^{(2)} = \epsilon_1 - \frac{\alpha_1}{\alpha_2}\epsilon_2$$
 is an IV for $X^{(1)}$
 $SIV_2^{(3)} = X^{(3)} - \frac{\alpha_3}{\alpha_3}X^{(2)} = \epsilon_3 - \frac{\alpha_3}{\alpha_2}\epsilon_2$ is an IV for $X^{(3)}$

 α_2

7/20

The Synthetic 2SLS



Two stage least squares (2SLS):

- 1. Regress $\mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)})$ on $\mathbf{SIV}_2 = (SIV_2^{(1)}, SIV_2^{(3)})$
- 2. Regress *Y* on \hat{X} fixing $\beta_2 = 0$

1. For j = 1, 2, 3: Regress **X** on **SIV**_j $\Rightarrow \hat{\mathbf{X}}^{(j)}$

2 For j = 1, 2, 3: Regress Y on $\widehat{\mathbf{X}}^{(j)}$ fixing $\beta_j = 0$

1. For
$$j = 1, 2, 3$$
: Regress **X** on SIV $_j \Rightarrow \widehat{X}^{(j)}$

Key result 1: *X*^(j) does not depend on *j*SIV₁, SIV₂, SIV₃ span the same linear space

1. $\operatorname{Flot}(J) \neq (1), 2, 3!$ Regress X on SIV⁽¹⁾ $\Rightarrow \widehat{X}^{(j)}$

1. $\operatorname{Flot}(J) \neq (1), 2, 3!$ Regress X on SIV⁽¹⁾ $\Rightarrow \hat{X}^{(j)}$

2 For j = 1, 2, 3: Regress Y on $\widehat{X}^{(j)}$ fixing $\beta_j = 0$

Voter 1
$$E(Y \mid \widehat{X}) = 0\widehat{X}_1 + \beta_2\widehat{X}_2 + \beta_3\widehat{X}_3$$
Voter 2 $E(Y \mid \widehat{X}) = \beta_1\widehat{X}_1 + 0\widehat{X}_2 + \beta_3\widehat{X}_3$ Voter 3 $E(Y \mid \widehat{X}) = \beta_1\widehat{X}_1 + \beta_2\widehat{X}_2 + 0\widehat{X}_3$

and then compare estimates

1. $Flow I = \widehat{X}^{(1)}$ Regress X on $SIV^{(1)} \Rightarrow \widehat{X}^{(1)}$

2 For j = 1, 2, 3: Regress Y on $\widehat{\boldsymbol{X}}^{(j)}$ fixing $\beta_j = 0$ Suppose $\dot{\beta}_1 = \dot{\beta}_2 = 0, \dot{\beta}_3 \neq 0$:

Voter 1	$E(Y \mid \widehat{\boldsymbol{X}}) = 0\widehat{X}_1 + 0\widehat{X}_2 + \beta_3\widehat{X}_3$
Voter 2	$E(Y \mid \widehat{\boldsymbol{X}}) = 0\widehat{X}_1 + 0\widehat{X}_2 + \beta_3\widehat{X}_3$
Voter 3	$E(Y \mid \widehat{\boldsymbol{X}}) = \beta_1 \widehat{X}_1 + \beta_2 \widehat{X}_2 + 0 \widehat{X}_3$

and then compare estimates

1. $Flow I = \widehat{X}^{(1)}$ Regress X on $SIV^{(1)} \Rightarrow \widehat{X}^{(1)}$

2 For j = 1, 2, 3: Regress Y on $\widehat{\boldsymbol{X}}^{(j)}$ fixing $\beta_j = 0$ Suppose $\dot{\beta}_1 = \dot{\beta}_2 = 0, \dot{\beta}_3 \neq 0$:

Voter 1	$E(Y \mid \widehat{\boldsymbol{X}}) = 0\widehat{X}_1 + 0\widehat{X}_2 + \beta_3\widehat{X}_3$
Voter 2	$E(Y \mid \widehat{\boldsymbol{X}}) = 0\widehat{X}_1 + 0\widehat{X}_2 + \beta_3\widehat{X}_3$
Voter 3	$E(Y \mid \widehat{\boldsymbol{X}}) = \beta_1 \widehat{X}_1 + \beta_2 \widehat{X}_2 + 0 \widehat{X}_3$

and then compare estimates

Key result 2: We can directly run a penalized regression

$$Y \sim \widehat{X}_1 + \widehat{X}_2 + \widehat{X}_3.$$

subject to $\|\beta\|_0 \leq 1$.

Synthetic 2SLS for sparse treatment effects

- 1. $Flow I = \widehat{X}^{(1)} \Rightarrow \widehat{X}^{(1)}$
- 2 Fot/J/#/1/2/Bt Regress Y on \hat{X} subject to $\|(\beta_1, \beta_2, \beta_3)\|_0 \le 1.$

Synthetic Instrument: The general case

$$\begin{aligned} \mathbf{X} &= \mathbf{U}^T \mathbf{A} + \epsilon_X; \\ \mathbf{Y} &= \mathbf{X}^T \boldsymbol{\beta} + \mathbf{U} \boldsymbol{\gamma} + \epsilon_Y. \end{aligned}$$

- $\boldsymbol{X} \in \mathbb{R}^{p} : p$ may grow with n
- $\boldsymbol{U} \in \mathbb{R}^q : q < p$ may also grow with n
- $\epsilon_{X_1}, \epsilon_{X_2}, \ldots, \epsilon_{X_p}, \epsilon_Y, U$ are uncorrelated
- Assume $\|m{eta}\|_0 \leq s$

Synthetic Instrument: The general case

$$\begin{aligned} \mathbf{X} &= \mathbf{U}^T \mathbf{A} + \epsilon_X; \\ \mathbf{Y} &= \mathbf{X}^T \boldsymbol{\beta} + \mathbf{U} \boldsymbol{\gamma} + \epsilon_Y. \end{aligned}$$

- $\boldsymbol{X} \in \mathbb{R}^{p} : p$ may grow with n
- $\boldsymbol{U} \in \mathbb{R}^q : q < p$ may also grow with n
- $\epsilon_{X_1}, \epsilon_{X_2}, \ldots, \epsilon_{X_p}, \epsilon_Y, U$ are uncorrelated
- Assume $\|\boldsymbol{\beta}\|_0 \leq s$

Synthetic instrument (SIV): Suppose $\beta_j = 0$ for $j \in C$, |C| = q. Then the synthetic instrument is a p - q dimensional vector with components

$$SIV^{(j)}_{\mathcal{C}} = X^{(j)} - A^{\mathsf{T}}_{j}A^{-1}_{\mathcal{C}}X_{\mathcal{C}}, \quad j \in \{1, \dots, p\} \setminus \mathcal{C},$$

where A_j is the *j*th column of $A_{q \times p}$.

Theorem (Uniqueness)

$\widehat{\mathbf{X}} \equiv \mathbb{E}(\mathbf{X} \mid SIV_{\mathbf{C}})$ does not depend on the choice of C.

Main Result 2

Theorem (ℓ_0 optimization)

Assume that β is sufficiently sparse. Then under regularity conditions, β is identifiable via following optimization problem

$$\dot{oldsymbol{eta}} = rgmin_{oldsymbol{eta} \in \mathbb{R}^p} \mathbb{E}(oldsymbol{Y} - \widehat{oldsymbol{X}}^Toldsymbol{eta})^2,$$

subject to $||\boldsymbol{\beta}||_0 \leq (dim(\boldsymbol{X}) - dim(\boldsymbol{U}))/2$.

Main Result 2

Theorem (ℓ_0 optimization)

Assume that β is sufficiently sparse. Then under regularity conditions, β is identifiable via following optimization problem

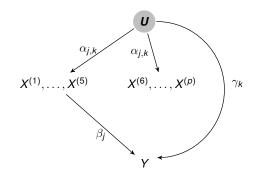
$$\dot{oldsymbol{eta}} = rgmin_{oldsymbol{eta} \in \mathbb{R}^{
ho}} \mathbb{E}(oldsymbol{Y} - \widehat{oldsymbol{X}}^{ op}oldsymbol{eta})^2,$$

subject to $||\beta||_0 \le (dim(\boldsymbol{X}) - dim(\boldsymbol{U}))/2$.

• Can be solved efficiently using the LOLearn package (Hazimeh and Mazumder, 2020)

Numerical experiments

Data generation



•
$$U \sim MVN(0, I_{5 \times 5})$$

• $\alpha_{j,k} \sim Unif(-1, 1), j = 1, \dots, p, k = 1, \dots, 5$
• $\beta_j = 1, j = 1, \dots, 5$
• $\gamma_k \sim Unif(-2, 2), k = 1, \dots, 5$

Comparison Methods

- SIV: Synthetic 2SLS, eBIC for tunning parameter selection
- Lasso: Lasso, eBIC for tunning parameter selection
- Null: Miao et al. (2021)'s method
 - A robust linear regression based approach
 - No variable selection: all $\hat{\beta}_j, j = 1, \dots, p$ are non-zero
 - Only considered the low-dimensional settings (we tried an extension to high-dimensional settings)
- Trim: Ćevid et al. (2020) and Guo et al. (2021)'s method

 $\text{Coef}(Y \sim X) = \text{sparse coefficient} + \text{non-sparse confounding bias}$

- Assume the confounding bias is asymptotically negligible
- Only consistent in high-dimensional settings

Settings

- Low-dimensional case: *p* = 100, *n* = 200, ..., 5000
- High-dimensional case: *n* = 500, *p* = 500, ..., 3000

Measures of performance:

• Estimation error: ℓ_1 error

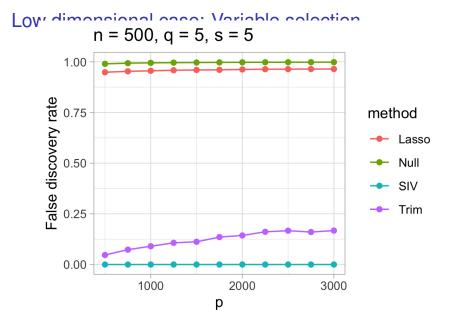
$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_1$$

• Variable selection: false discovery rate

Low dimensional case: Estimation error

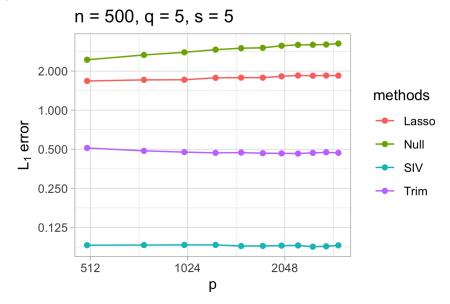


Estimation error $||\widehat{\beta} - \beta||_1$ for various methods



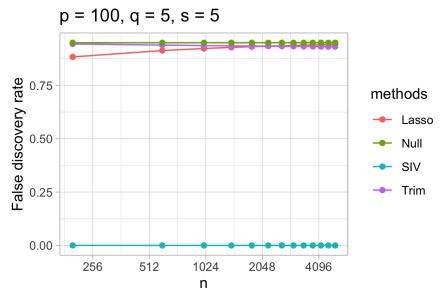
All methods correctly identify X_1, \ldots, X_5 as causes of Y

High dimensional case: Estimation error



Estimation error $||\widehat{eta} - eta||_1$ for various methods

High dimensional case: Variable selection



All methods correctly identify X_1, \ldots, X_5 as causes of Y

Summary

- Causal inference is possible with a high-dimensional exposure and sparse treatment effects
- Synthetic instrument is a powerful tool for causal effect estimation under linear models with multiple causes
 - Easy to implement
 - Computationally efficient
 - Outperform the state-of-art method in various settings
 - Causal effect estimation
 - Selection of true causes

References I

- Ćevid, D., Bühlmann, P., and Meinshausen, N. (2020). Spectral deconfounding via perturbed sparse linear models. Journal of Machine Learning Research, 21:232.
- Guo, Z., Ćevid, D., and Bühlmann, P. L. (2021). Doubly debiased lasso: High-dimensional inference under hidden confounding. <u>The Annals of Statistics</u>.
- Hazimeh, H. and Mazumder, R. (2020). Fast best subset selection: Coordinate descent and local combinatorial optimization algorithms. <u>Operations Research</u>, 68(5):1517–1537.
- Miao, W., Hu, W., Ogburn, E. L., and Zhou, X. (2021). Identifying effects of multiple treatments in the presence of unmeasured confounding. <u>Journal of the American</u> <u>Statistical Association</u>, (just-accepted):1–36.
- Wang, Y. and Blei, D. M. (2019). The blessings of multiple causes. <u>Journal of the</u> <u>American Statistical Association</u>, 114(528):1574–1596.

Assumptions

- B1 The eigenvalues of $A^{T}A/p$ and D are bounded away from 0 and infinity. $||\gamma||_{2} \leq \infty$.
- B2 ϵ_y is independent of (X, U). Further more, assume $\epsilon_{y,i}$, $X_{i,j}$ are i.i.d sub-gaussian random variables such that $||\epsilon_{y,i}||_{\psi 2} = \sigma_y^2$, $\max_{1 \le j \le p} ||X_{i,j}||_{\psi 2} = \sigma_x^2$. The parameters satisfies $\sigma_y^2 \le C_4$, $C_5 \le \sigma_x^2 \le C_6$ for some constant $C_4, C_5, C_6 > 0$.
- B3 (Restrict sparse eigenvalue condition) with probability $1 \exp(cn)$ for some positive constant c, there exist a constant π_0 such that

$$||\widehat{X}\theta||_2 \ge \pi_0 \sqrt{n} ||\theta||_2, \forall ||\theta||_0 \le 2s.$$

Miao et al. (2021)'s method

(Their δ is our γ , corresponding to the edge $U \rightarrow Y$)

- 1. Standard factor analysis to get α , and $\gamma = \Sigma_{\chi}^{-1} \alpha$
- 2. Regress Y on **X** to get ξ_i as the coefficient for **X**^(j)
- 3. Since $\xi_j = \beta_j + \gamma_j \delta$, and $\|\beta\|_0 \le (p-q)/2$, they let

$$\widehat{\delta} = \arg\min_{\delta} \operatorname{median}\{(\widehat{\xi}_j - \widehat{\gamma}_j \delta)^2\}$$

4.
$$\widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\xi}} - \widehat{\boldsymbol{\gamma}}\widehat{\delta}$$

Ćevid et al. (2020)'s method

Assume X and U are jointly Gaussian.

Assume confounding is negligible:

$$\|b\|_2^2 = O(\frac{s\sigma^2\log p}{p}).$$

It is important that the effect of the latent variables is spread out over many predictors

Stage I: Regress **X** on $B_{A^{\perp}}$ **X**:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\scriptscriptstyle \mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{\scriptscriptstyle T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$
- 2. Estimate $D_{p \times p}$
- 3. Plug in

Stage I: Regress **X** on $B_{A^{\perp}}$ **X**:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\scriptscriptstyle \mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{\scriptscriptstyle T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$
- 3. Plug in

Stage I: Regress **X** on $B_{A^{\perp}}$ **X**:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\scriptscriptstyle ext{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{\scriptscriptstyle extsf{T}}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$

$$\widehat{D} = \widehat{Var}(X) - \widehat{A}^T \widehat{A}$$

3. Plug in

Stage I: Regress \boldsymbol{X} on $B_{A^{\perp}}\boldsymbol{X}$:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$

$$\widehat{D} = diag(\widehat{Var}(X^{(j)}) - \widehat{A}_j^T \widehat{A}_j), \text{ here } \widehat{A}_j \text{ is j'th row of } \widehat{A}_j$$

3. Plug in

Stage I: Regress \boldsymbol{X} on $B_{A^{\perp}}\boldsymbol{X}$:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$

$$\widehat{D} = diag(\widehat{Var}(X^{(j)}) - \widehat{A}_j^T \widehat{A}_j), \text{ here } \widehat{A}_j \text{ is j'th row of } \widehat{A}_j$$

3. Plug in: Need to invert $(B_{A^{\perp}}^{T}DB_{A^{\perp}})_{(p-q)\times(p-q)}$

Stage I: Regress \boldsymbol{X} on $B_{A^{\perp}}\boldsymbol{X}$:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$

 $\widehat{D} = diag(\widehat{Var}(X^{(j)}) - \widehat{A}_j^T \widehat{A}_j), \text{ here } \widehat{A}_j \text{ is j'th row of } \widehat{A}$

3. Plug in: Need to invert $(B_{A^{\perp}}^{T}DB_{A^{\perp}})_{(p-q)\times(p-q)}$ Let $\tilde{X} = X\hat{D}^{-1/2}$ so that

$$E(\widetilde{\boldsymbol{X}} \mid \boldsymbol{B}_{A^{\perp}} \widetilde{\boldsymbol{X}}) = \widehat{D}^{1/2} \widetilde{\boldsymbol{B}}_{A^{\perp}} (\widetilde{\boldsymbol{B}}_{A^{\perp}}^{\mathrm{T}} \widetilde{\boldsymbol{B}}_{A^{\perp}})^{-1} \widetilde{\boldsymbol{B}}_{A^{\perp}}^{T} \widehat{D}^{-1/2} \widetilde{\boldsymbol{X}},$$

Stage I: Regress \boldsymbol{X} on $B_{A^{\perp}}\boldsymbol{X}$:

$$E(\boldsymbol{X} \mid B_{A^{\perp}}\boldsymbol{X}) = DB_{A^{\perp}}(B_{A^{\perp}}^{\mathrm{T}}DB_{A^{\perp}})^{-1}B_{A^{\perp}}^{T}\boldsymbol{X},$$

where $D = Cov(\epsilon_X)$ is a diagonal matrix.

- 1. Estimate $A_{q \times p}$ and $B_{A^{\perp}}$: standard factor analysis
- 2. Estimate $D_{p \times p}$

 $\widehat{D} = diag(\widehat{Var}(X^{(j)}) - \widehat{A}_j^T \widehat{A}_j), \text{ here } \widehat{A}_j \text{ is j'th row of } \widehat{A}$

3. Plug in: Need to invert $(B_{A^{\perp}}^{T}DB_{A^{\perp}})_{(p-q)\times(p-q)}$ Let $\tilde{X} = X\hat{D}^{-1/2}$ so that

$$E(\widetilde{\boldsymbol{X}} \mid \boldsymbol{B}_{A^{\perp}} \widetilde{\boldsymbol{X}}) = \widehat{D}^{1/2} \widetilde{\boldsymbol{B}}_{A^{\perp}} (\widetilde{\boldsymbol{B}}_{A^{\perp}}^{\mathrm{T}} \widetilde{\boldsymbol{B}}_{A^{\perp}})^{-1} \widetilde{\boldsymbol{B}}_{A^{\perp}}^{\mathrm{T}} \widehat{D}^{-1/2} \widetilde{\boldsymbol{X}},$$

Synthetic 2SLS in high dimensions: Stage II

Need to estimate

$$\dot{oldsymbol{eta}} = rgmin_{oldsymbol{eta}\in\mathbb{R}^{
ho}} \mathbb{E}(oldsymbol{Y}-\widehat{oldsymbol{X}}^{T}oldsymbol{eta})^{2},$$

subject to $||\beta||_0 \le (dim(X) - dim(U))/2$

• Can be solved efficiently using the LOLearn package (Hazimeh and Mazumder, 2020)

Theoretical results: Error bound

Theorem

Under the same assumptions as before, and standard regularity conditions, we have

$$||\widehat{eta} - eta||_1 = O_p(s\sqrt{rac{\log(p)}{n}})$$

•
$$\boldsymbol{s} = \|\boldsymbol{\beta}\|_0$$

- p = dim(X)
- *n* = sample size